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An Even More Straightforward Proof 
of Descartes’s Circle Theorem Alden Bradford

Descartes’s circle theorem states that the radii 
of four mutually tangent circles r1, r2, r3, r4 
satisfy

The radii are defined as negative if the corresponding circle 
encloses the others. In this way, we preserve the relation 
d2
ij
= (ri + rj)

2 , where dij is the distance between the centers 
of circles ri and rj.

An article [7] published in this journal in 2019 gives a 
short history of the theorem and provides an original and 
straightforward proof based on Heron’s formula. Here, 
we provide an even more straightforward proof based on 
a generalization of Heron’s formula, the Cayley–Menger 
determinant.

Cayley–Menger Determinants
The Cayley–Menger determinant was first introduced by 
Arthur Cayley in 1841 [2, 8]. It gives a formula for the 
volume of an n-simplex in terms of the pairwise distances 
between the vertices. In the case of a triangle with side 
lengths a, b, c and area A, the formula is equivalent to 
Heron’s formula,

To prove Descartes’s theorem, we will use the Cay-
ley–Menger determinant for the tetrahedron of volume v,

This formula is quite simple to prove. We present the 
tetrahedral case here, adapted from the more general proof 

(
1

r1
+

1

r2
+

1

r3
+

1

r4

)2

= 2

(
1

r21
+

1

r22
+

1

r23
+

1

r24

)
.

−16A2 =

||||||||

0 1 1 1
1 0 c2 b2

1 c2 0 a2

1 b2 a2 0

||||||||
.

288v2 =

||||||||||

0 1 1 1 1
1 0 d212 d213 d214
1 d221 0 d223 d224
1 d231 d232 0 d234
1 d242 d242 d243 0

||||||||||

.

given in [1] for an n-simplex. Let xj be the jth vertex of the 
tetrahedron, and xij its ith component. Write

and

Because d2
ij
= |xi − xj|2 = |xi|2 + |xj|2 − 2xi ⋅ xj , we have 

that UTWU = D , the matrix of the Cayley–Menger 
determinant. On the other hand, |W| = 8 , and we can 
expand along the first column of U to reach the standard 
cross-product-style formula for the volume of a 
tetrahedron,

Putting these together yields |D| = ||UT
WU|| = |U|2|W| =

288v
2.

Proof of the Circle Theorem
The strategy for our proof of Descartes’s circle theorem is 
to consider the tetrahedron whose vertices are the centers 
of the given circles. We apply the Cayley–Menger determi-
nant formula, replacing each dij with ri + rj . After simplify-
ing, we have the formula

U =

⎡
⎢⎢⎢⎢⎣

1 �x1�2 �x2�2 �x3�2 �x4�2
0 1 1 1 1
0 x11 x12 x13 x14
0 x21 x22 x23 x24
0 x31 x32 x33 x34

⎤⎥⎥⎥⎥⎦

W =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 0 − 2 0 0
0 0 0 − 2 0
0 0 0 0 − 2

⎤
⎥⎥⎥⎥⎦
.
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||||||||
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This equation gives us exactly what we need. If the four 
circle centers lie in a plane, then their tetrahedron will 
have zero volume. Since none of the radii are zero, the term 
r1r2r3r4 must be nonzero, and hence

That is the whole of the proof. All that remains is to justify 
the volume formula given above.

Let D be the matrix in the Cayley–Menger determinant 
formula. When we expand the terms d2

ij
= r2

i
+ 2rirj + r2

j
 , we 

are left with the term r2
i
 repeated along each row. We can 

eliminate it using the matrix

giving us

Each column and row has a common fac-
tor of ri , so we can pull it out using the matrix 
Q = diag (1, 1∕r1, 1∕r2, 1∕r3, 1∕r4) . Then

Write R =
[
1∕r1 1∕r2 1∕r3 1∕r4

]T
 and S = 2��

T − 4I , 
where � =

[
1 1 1 1

]
 , which allows us to put this in the 

block form

There are a couple of things to note about S. First, observe 
that S2 = 16I , and so S−1 = 1

16
S . Second, we can readily 

compute |S| = −256 . We take advantage of both of these 
when applying a common rule for the determinants of 
block matrices. Recall that if A22 is invertible, then
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P =

⎡
⎢⎢⎢⎢⎣

1 − r21 − r22 − r23 − r24
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

PTDP =

⎡⎢⎢⎢⎢⎣

0 1 1 1 1
1 − 2r21 2r1r2 2r1r3 2r1r4
1 2r2r1 − 2r22 2r2r3 2r2r4
1 2r3r1 2r3r2 − 2r23 2r3r4
1 2r4r1 2r4r2 2r4r3 − 2r24

⎤⎥⎥⎥⎥⎦
.
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QTPTDPQ =

[
0 RT

R S

]
.

||||
A11 A12
A21 A22

|||| = |A22|||A11 − A12A
−1
22A21

|| .

We apply this here to obtain

On the other hand,

This completes the proof.

Generalizing to Higher Dimensions
The Soddy–Gosset theorem generalizes the Descartes circle 
theorem to configurations of n + 2 mutually tangent spheres 
in n dimensions. With r1 , r2 , ..., rn+2 denoting the signed 
radii of the n-dimensional spheres, the theorem states that

The above proof generalizes perfectly well to higher 
dimensions, giving exactly the Soddy–Gosset theorem. 
The only changes are the sizes of the matrices. In general, 
the Cayley–Menger determinant for n + 2 points evalu-
ates to

where vn+1 is written to emphasize that the formula gives 
an (n + 1)-dimensional volume. The general matrix S has 
determinant and inverse

Carrying these changes through the computation gives
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Analysis
The proof above has an intuitive meaning, since it connects 
the Descartes formula to the volume of a simplex. It gener-
alizes nicely to higher dimensions as well. Since Descartes’s 
theorem deals only with the distances between points, it 
seems natural to approach this problem from the perspec-
tive of distance geometry. Cayley–Menger determinants 
are a foundational tool in distance geometry. In Cayley’s 
original paper he used the argument that the determinant 
should be zero when all the points lie in a lower-dimen-
sional subspace, which is the same way we use it here. The 
simplex that joins the centers in a sphere packing has been 
used before to prove facts about sphere packings [3, 4, 9]. 
Certainly, many brilliant minds have sat down to prove 
Descartes’s theorem, bringing all manner of advanced tech-
niques to bear.

Given all these hints littered throughout history, why 
wasn’t this proof noticed 181 years ago when Cayley first 
introduced his determinant? We can only speculate, of 
course, but I would suggest the reason is that there was less 
interest in Descartes’s circle theorem back then. We are in 
the middle of a renaissance of interest in the theorem, due 
both to the complex-valued generalization [6] and inter-
est in the number-theoretic properties of Apollonian circle 
packings [10]. The proof given here does not address the 
complex-valued generalization, which is the main limita-
tion of this proof. There is a concise and elegant proof of 
that due to Jerzy Kocik [5].
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